博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
Hive学习之路 (七)Hive的DDL操作
阅读量:6329 次
发布时间:2019-06-22

本文共 16019 字,大约阅读时间需要 53 分钟。

库操作

1、创建库

语法结构

CREATE (DATABASE|SCHEMA) [IF NOT EXISTS] database_name

  [COMMENT database_comment]      //关于数据块的描述

  [LOCATION hdfs_path]          //指定数据库在HDFS上的存储位置

  [WITH DBPROPERTIES (property_name=property_value, ...)];    //指定数据块属性

  默认地址:/user/hive/warehouse/db_name.db/table_name/partition_name/…

创建库的方式

(1)创建普通的数据库

0: jdbc:hive2://hadoop3:10000> create database t1;No rows affected (0.308 seconds)0: jdbc:hive2://hadoop3:10000> show databases;+----------------+| database_name  |+----------------+| default        || myhive         || t1             |+----------------+3 rows selected (0.393 seconds)0: jdbc:hive2://hadoop3:10000>

(2)创建库的时候检查存与否

0: jdbc:hive2://hadoop3:10000> create database if not exists t1;No rows affected (0.176 seconds)0: jdbc:hive2://hadoop3:10000>

(3)创建库的时候带注释

 

0: jdbc:hive2://hadoop3:10000> create database if not exists t2 comment 'learning hive';

No rows affected (0.217 seconds)
0: jdbc:hive2://hadoop3:10000> 

 

(4)创建带属性的库

0: jdbc:hive2://hadoop3:10000> create database if not exists t3 with dbproperties('creator'='hadoop','date'='2018-04-05');No rows affected (0.255 seconds)0: jdbc:hive2://hadoop3:10000>

2、查看库

查看库的方式

(1)查看有哪些数据库

0: jdbc:hive2://hadoop3:10000> show databases;

+----------------+
| database_name |
+----------------+
| default |
| myhive |
| t1 |
| t2 |
| t3 |
+----------------+
5 rows selected (0.164 seconds)
0: jdbc:hive2://hadoop3:10000>

 

(2)显示数据库的详细属性信息

语法

desc database [extended] dbname;

示例

0: jdbc:hive2://hadoop3:10000> desc database extended t3;+----------+----------+------------------------------------------+-------------+-------------+------------------------------------+| db_name  | comment  |                 location                 | owner_name  | owner_type  |             parameters             |+----------+----------+------------------------------------------+-------------+-------------+------------------------------------+| t3       |          | hdfs://myha01/user/hive/warehouse/t3.db  | hadoop      | USER        | {date=2018-04-05, creator=hadoop}  |+----------+----------+------------------------------------------+-------------+-------------+------------------------------------+1 row selected (0.11 seconds)0: jdbc:hive2://hadoop3:10000>

 

(3)查看正在使用哪个库

0: jdbc:hive2://hadoop3:10000> select current_database();+----------+|   _c0    |+----------+| default  |+----------+1 row selected (1.36 seconds)0: jdbc:hive2://hadoop3:10000>

 

(4)查看创建库的详细语句

0: jdbc:hive2://hadoop3:10000> show create database t3;+----------------------------------------------+|                createdb_stmt                 |+----------------------------------------------+| CREATE DATABASE `t3`                         || LOCATION                                     ||   'hdfs://myha01/user/hive/warehouse/t3.db'  || WITH DBPROPERTIES (                          ||   'creator'='hadoop',                        ||   'date'='2018-04-05')                       |+----------------------------------------------+6 rows selected (0.155 seconds)0: jdbc:hive2://hadoop3:10000>

3、删除库

说明

删除库操作

drop database dbname;drop database if exists dbname;

默认情况下,hive 不允许删除包含表的数据库,有两种解决办法:

1、 手动删除库下所有表,然后删除库

2、 使用 cascade 关键字

drop database if exists dbname cascade;

默认情况下就是 restrict drop database if exists myhive ==== drop database if exists myhive restrict

示例

(1)删除不含表的数据库

0: jdbc:hive2://hadoop3:10000> show tables in t1;+-----------+| tab_name  |+-----------++-----------+No rows selected (0.147 seconds)0: jdbc:hive2://hadoop3:10000> drop database t1;No rows affected (0.178 seconds)0: jdbc:hive2://hadoop3:10000> show databases;+----------------+| database_name  |+----------------+| default        || myhive         || t2             || t3             |+----------------+4 rows selected (0.124 seconds)0: jdbc:hive2://hadoop3:10000>

(2)删除含有表的数据库

0: jdbc:hive2://hadoop3:10000> drop database if exists t3 cascade;No rows affected (1.56 seconds)0: jdbc:hive2://hadoop3:10000>

4、切换库

语法

use database_name

示例

0: jdbc:hive2://hadoop3:10000> use t2;No rows affected (0.109 seconds)0: jdbc:hive2://hadoop3:10000>

表操作

1、创建表

语法

CREATE [EXTERNAL] TABLE [IF NOT EXISTS] table_name

  [(col_name data_type [COMMENT col_comment], ...)]

  [COMMENT table_comment]

  [PARTITIONED BY (col_name data_type [COMMENT col_comment], ...)]

  [CLUSTERED BY (col_name, col_name, ...)

    [SORTED BY (col_name [ASC|DESC], ...)] INTO num_buckets BUCKETS]

  [ROW FORMAT row_format]

  [STORED AS file_format]

  [LOCATION hdfs_path]

详情请参见:

•CREATE TABLE 创建一个指定名字的表。如果相同名字的表已经存在,则抛出异常;用户可以用 IF NOT EXIST 选项来忽略这个异常•EXTERNAL 关键字可以让用户创建一个外部表,在建表的同时指定一个指向实际数据的路径(LOCATION)•LIKE 允许用户复制现有的表结构,但是不复制数据•COMMENT可以为表与字段增加描述
•PARTITIONED BY 指定分区 •ROW FORMAT   DELIMITED [FIELDS TERMINATED BY char] [COLLECTION ITEMS TERMINATED BY char]     MAP KEYS TERMINATED BY char] [LINES TERMINATED BY char]     | SERDE serde_name [WITH SERDEPROPERTIES     (property_name=property_value, property_name=property_value, ...)]   用户在建表的时候可以自定义 SerDe 或者使用自带的 SerDe。如果没有指定 ROW FORMAT 或者 ROW FORMAT DELIMITED,将会使用自带的 SerDe。在建表的时候, 用户还需要为表指定列,用户在指定表的列的同时也会指定自定义的 SerDe,Hive 通过 SerDe 确定表的具体的列的数据。 •STORED AS   SEQUENCEFILE //序列化文件   | TEXTFILE //普通的文本文件格式   | RCFILE  //行列存储相结合的文件   | INPUTFORMAT input_format_classname OUTPUTFORMAT output_format_classname //自定义文件格式   如果文件数据是纯文本,可以使用 STORED AS TEXTFILE。如果数据需要压缩,使用 STORED AS SEQUENCE 。
•LOCATION指定表在HDFS的存储路径

最佳实践:

  如果一份数据已经存储在HDFS上,并且要被多个用户或者客户端使用,最好创建外部表
  反之,最好创建内部表。

  如果不指定,就按照默认的规则存储在默认的仓库路径中。

示例

使用t2数据库进行操作

(1)创建默认的内部表

0: jdbc:hive2://hadoop3:10000> create table student(id int, name string, sex string, age int,department string) row format delimited fields terminated by ",";No rows affected (0.222 seconds)0: jdbc:hive2://hadoop3:10000> desc student;+-------------+------------+----------+|  col_name   | data_type  | comment  |+-------------+------------+----------+| id          | int        |          || name        | string     |          || sex         | string     |          || age         | int        |          || department  | string     |          |+-------------+------------+----------+5 rows selected (0.168 seconds)0: jdbc:hive2://hadoop3:10000>

(2)外部表

0: jdbc:hive2://hadoop3:10000> create external table student_ext (id int, name string, sex string, age int,department string) row format delimited fields terminated by "," location "/hive/student";No rows affected (0.248 seconds)0: jdbc:hive2://hadoop3:10000>

(3)分区表

0: jdbc:hive2://hadoop3:10000> create external table student_ptn(id int, name string, sex string, age int,department string). . . . . . . . . . . . . . .> partitioned by (city string). . . . . . . . . . . . . . .> row format delimited fields terminated by ",". . . . . . . . . . . . . . .> location "/hive/student_ptn";No rows affected (0.24 seconds)0: jdbc:hive2://hadoop3:10000>

添加分区

0: jdbc:hive2://hadoop3:10000> alter table student_ptn add partition(city="beijing");No rows affected (0.269 seconds)0: jdbc:hive2://hadoop3:10000> alter table student_ptn add partition(city="shenzhen");No rows affected (0.236 seconds)0: jdbc:hive2://hadoop3:10000>

如果某张表是分区表。那么每个分区的定义,其实就表现为了这张表的数据存储目录下的一个子目录

如果是分区表。那么数据文件一定要存储在某个分区中,而不能直接存储在表中。

(4)分桶表

0: jdbc:hive2://hadoop3:10000> create external table student_bck(id int, name string, sex string, age int,department string). . . . . . . . . . . . . . .> clustered by (id) sorted by (id asc, name desc) into 4 buckets. . . . . . . . . . . . . . .> row format delimited fields terminated by ",". . . . . . . . . . . . . . .> location "/hive/student_bck";No rows affected (0.216 seconds)0: jdbc:hive2://hadoop3:10000>

(5)使用CTAS创建表

作用: 就是从一个查询SQL的结果来创建一个表进行存储

现象student表中导入数据

0: jdbc:hive2://hadoop3:10000> load data local inpath "/home/hadoop/student.txt" into table student;No rows affected (0.715 seconds)0: jdbc:hive2://hadoop3:10000> select * from student;+-------------+---------------+--------------+--------------+---------------------+| student.id  | student.name  | student.sex  | student.age  | student.department  |+-------------+---------------+--------------+--------------+---------------------+| 95002       | 刘晨            | 女            | 19           | IS                  || 95017       | 王风娟           | 女            | 18           | IS                  || 95018       | 王一            | 女            | 19           | IS                  || 95013       | 冯伟            | 男            | 21           | CS                  || 95014       | 王小丽           | 女            | 19           | CS                  || 95019       | 邢小丽           | 女            | 19           | IS                  || 95020       | 赵钱            | 男            | 21           | IS                  || 95003       | 王敏            | 女            | 22           | MA                  || 95004       | 张立            | 男            | 19           | IS                  || 95012       | 孙花            | 女            | 20           | CS                  || 95010       | 孔小涛           | 男            | 19           | CS                  || 95005       | 刘刚            | 男            | 18           | MA                  || 95006       | 孙庆            | 男            | 23           | CS                  || 95007       | 易思玲           | 女            | 19           | MA                  || 95008       | 李娜            | 女            | 18           | CS                  || 95021       | 周二            | 男            | 17           | MA                  || 95022       | 郑明            | 男            | 20           | MA                  || 95001       | 李勇            | 男            | 20           | CS                  || 95011       | 包小柏           | 男            | 18           | MA                  || 95009       | 梦圆圆           | 女            | 18           | MA                  || 95015       | 王君            | 男            | 18           | MA                  |+-------------+---------------+--------------+--------------+---------------------+21 rows selected (0.342 seconds)0: jdbc:hive2://hadoop3:10000>

使用CTAS创建表

0: jdbc:hive2://hadoop3:10000> create table student_ctas as select * from student where id < 95012;WARNING: Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases.No rows affected (34.514 seconds)0: jdbc:hive2://hadoop3:10000> select * from student_ctas. . . . . . . . . . . . . . .> ;+------------------+--------------------+-------------------+-------------------+--------------------------+| student_ctas.id  | student_ctas.name  | student_ctas.sex  | student_ctas.age  | student_ctas.department  |+------------------+--------------------+-------------------+-------------------+--------------------------+| 95002            | 刘晨                 | 女                 | 19                | IS                       || 95003            | 王敏                 | 女                 | 22                | MA                       || 95004            | 张立                 | 男                 | 19                | IS                       || 95010            | 孔小涛                | 男                 | 19                | CS                       || 95005            | 刘刚                 | 男                 | 18                | MA                       || 95006            | 孙庆                 | 男                 | 23                | CS                       || 95007            | 易思玲                | 女                 | 19                | MA                       || 95008            | 李娜                 | 女                 | 18                | CS                       || 95001            | 李勇                 | 男                 | 20                | CS                       || 95011            | 包小柏                | 男                 | 18                | MA                       || 95009            | 梦圆圆                | 女                 | 18                | MA                       |+------------------+--------------------+-------------------+-------------------+--------------------------+11 rows selected (0.445 seconds)0: jdbc:hive2://hadoop3:10000>

(6)复制表结构

0: jdbc:hive2://hadoop3:10000> create table student_copy like student;No rows affected (0.217 seconds)0: jdbc:hive2://hadoop3:10000>

注意:

如果在table的前面没有加external关键字,那么复制出来的新表。无论如何都是内部表

如果在table的前面有加external关键字,那么复制出来的新表。无论如何都是外部表

2、查看表

(1)查看表列表

查看当前使用的数据库中有哪些表

0: jdbc:hive2://hadoop3:10000> show tables;+---------------+|   tab_name    |+---------------+| student       || student_bck   || student_copy  || student_ctas  || student_ext   || student_ptn   |+---------------+6 rows selected (0.163 seconds)0: jdbc:hive2://hadoop3:10000>

查看非当前使用的数据库中有哪些表

0: jdbc:hive2://hadoop3:10000> show tables in myhive;+-----------+| tab_name  |+-----------+| student   |+-----------+1 row selected (0.144 seconds)0: jdbc:hive2://hadoop3:10000>

查看数据库中以xxx开头的表

0: jdbc:hive2://hadoop3:10000> show tables like 'student_c*';+---------------+|   tab_name    |+---------------+| student_copy  || student_ctas  |+---------------+2 rows selected (0.13 seconds)0: jdbc:hive2://hadoop3:10000>

(2)查看表的详细信息

查看表的信息

0: jdbc:hive2://hadoop3:10000> desc student;+-------------+------------+----------+|  col_name   | data_type  | comment  |+-------------+------------+----------+| id          | int        |          || name        | string     |          || sex         | string     |          || age         | int        |          || department  | string     |          |+-------------+------------+----------+5 rows selected (0.149 seconds)0: jdbc:hive2://hadoop3:10000>

查看表的详细信息(格式不友好)

0: jdbc:hive2://hadoop3:10000> desc extended student;

查看表的详细信息(格式友好)

0: jdbc:hive2://hadoop3:10000> desc formatted student;

查看分区信息

0: jdbc:hive2://hadoop3:10000> show partitions student_ptn;

(3)查看表的详细建表语句

0: jdbc:hive2://hadoop3:10000> show create table student_ptn;

3、修改表

(1)修改表名

0: jdbc:hive2://hadoop3:10000> alter table student rename to new_student;

(2)修改字段定义

A. 增加一个字段

0: jdbc:hive2://hadoop3:10000> alter table new_student add columns (score int);

B. 修改一个字段的定义

0: jdbc:hive2://hadoop3:10000> alter table new_student change name new_name string;

C. 删除一个字段

不支持

D. 替换所有字段

0: jdbc:hive2://hadoop3:10000> alter table new_student replace columns (id int, name string, address string);

(3)修改分区信息

A. 添加分区

静态分区

  添加一个

0: jdbc:hive2://hadoop3:10000> alter table student_ptn add partition(city="chongqing");

  添加多个

0: jdbc:hive2://hadoop3:10000> alter table student_ptn add partition(city="chongqing2") partition(city="chongqing3") partition(city="chongqing4");

动态分区

先向student_ptn表中插入数据,数据格式如下图

0: jdbc:hive2://hadoop3:10000> load data local inpath "/home/hadoop/student.txt" into table student_ptn partition(city="beijing");

现在我把这张表的内容直接插入到另一张表student_ptn_age中,并实现sex为动态分区(不指定到底是哪中性别,让系统自己分配决定)

首先创建student_ptn_age并指定分区为age

0: jdbc:hive2://hadoop3:10000> create table student_ptn_age(id int,name string,sex string,department string) partitioned by (age int);

从student_ptn表中查询数据并插入student_ptn_age表中

0: jdbc:hive2://hadoop3:10000> insert overwrite table student_ptn_age partition(age). . . . . . . . . . . . . . .> select id,name,sex,department,age from student_ptn;WARNING: Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases.No rows affected (27.905 seconds)0: jdbc:hive2://hadoop3:10000>

B. 修改分区

修改分区,一般来说,都是指修改分区的数据存储目录

在添加分区的时候,直接指定当前分区的数据存储目录

0: jdbc:hive2://hadoop3:10000> alter table student_ptn add if not exists partition(city='beijing') . . . . . . . . . . . . . . .> location '/student_ptn_beijing' partition(city='cc') location '/student_cc';No rows affected (0.306 seconds)0: jdbc:hive2://hadoop3:10000>

修改已经指定好的分区的数据存储目录

0: jdbc:hive2://hadoop3:10000> alter table student_ptn partition (city='beijing') set location '/student_ptn_beijing';

此时原先的分区文件夹仍存在,但是在往分区添加数据时,只会添加到新的分区目录

 

 

C. 删除分区

0: jdbc:hive2://hadoop3:10000> alter table student_ptn drop partition (city='beijing');

4、删除表

0: jdbc:hive2://hadoop3:10000> drop table new_student;

5、清空表

0: jdbc:hive2://hadoop3:10000> truncate table student_ptn;

其他辅助命令

 

 

转载地址:http://hpfoa.baihongyu.com/

你可能感兴趣的文章
有理想的程序员必须知道的15件事
查看>>
用于测试的字符串
查看>>
财付通和支付宝资料收集
查看>>
PHPCMS V9数据库表结构分析
查看>>
『原创』+『参考』基于PPC的图像对比程序——使用直方图度量
查看>>
理解 IEnumerable 与 IEnumerator
查看>>
NHibernate 2.0 Beta 1 Released和一些工具
查看>>
【每天一个Linux命令】12. Linux中which命令的用法
查看>>
软件接口数据一致性机制
查看>>
微服务架构介绍和RPC框架对比
查看>>
Debian下使用OpenLDAP 管理端
查看>>
泛型排序器TComparer
查看>>
9个offer,12家公司,35场面试,从微软到谷歌,应届计算机毕业生的2012求职之路...
查看>>
创建符合标准的、有语意的HTML页面——ASP.NET 2.0 CSS Friendly Control Adapters 1.0发布...
查看>>
Adobe驳斥Flash过度耗电论 称HTML5更耗电
查看>>
No!No!No! It's not fashion!
查看>>
艰困之道中学到的经验教训
查看>>
互联网生态建设落地五大挑战——保险科技生态建设 ...
查看>>
进行短视频app开发工作时,可以加入它来保护青少年 ...
查看>>
25G DAC无源高速线缆和25G光模块之间的区别
查看>>