库操作
1、创建库
语法结构
CREATE (DATABASE|SCHEMA) [IF NOT EXISTS] database_name
[COMMENT database_comment] //关于数据块的描述
[LOCATION hdfs_path] //指定数据库在HDFS上的存储位置
[WITH DBPROPERTIES (property_name=property_value, ...)]; //指定数据块属性
默认地址:/user/hive/warehouse/db_name.db/table_name/partition_name/…
创建库的方式
(1)创建普通的数据库
0: jdbc:hive2://hadoop3:10000> create database t1;No rows affected (0.308 seconds)0: jdbc:hive2://hadoop3:10000> show databases;+----------------+| database_name |+----------------+| default || myhive || t1 |+----------------+3 rows selected (0.393 seconds)0: jdbc:hive2://hadoop3:10000>
(2)创建库的时候检查存与否
0: jdbc:hive2://hadoop3:10000> create database if not exists t1;No rows affected (0.176 seconds)0: jdbc:hive2://hadoop3:10000>
(3)创建库的时候带注释
0: jdbc:hive2://hadoop3:10000> create database if not exists t2 comment 'learning hive';
No rows affected (0.217 seconds)0: jdbc:hive2://hadoop3:10000>
(4)创建带属性的库
0: jdbc:hive2://hadoop3:10000> create database if not exists t3 with dbproperties('creator'='hadoop','date'='2018-04-05');No rows affected (0.255 seconds)0: jdbc:hive2://hadoop3:10000>
2、查看库
查看库的方式
(1)查看有哪些数据库
0: jdbc:hive2://hadoop3:10000> show databases;
+----------------+| database_name |+----------------+| default || myhive || t1 || t2 || t3 |+----------------+5 rows selected (0.164 seconds)0: jdbc:hive2://hadoop3:10000>
(2)显示数据库的详细属性信息
语法
desc database [extended] dbname;
示例
0: jdbc:hive2://hadoop3:10000> desc database extended t3;+----------+----------+------------------------------------------+-------------+-------------+------------------------------------+| db_name | comment | location | owner_name | owner_type | parameters |+----------+----------+------------------------------------------+-------------+-------------+------------------------------------+| t3 | | hdfs://myha01/user/hive/warehouse/t3.db | hadoop | USER | {date=2018-04-05, creator=hadoop} |+----------+----------+------------------------------------------+-------------+-------------+------------------------------------+1 row selected (0.11 seconds)0: jdbc:hive2://hadoop3:10000>
(3)查看正在使用哪个库
0: jdbc:hive2://hadoop3:10000> select current_database();+----------+| _c0 |+----------+| default |+----------+1 row selected (1.36 seconds)0: jdbc:hive2://hadoop3:10000>
(4)查看创建库的详细语句
0: jdbc:hive2://hadoop3:10000> show create database t3;+----------------------------------------------+| createdb_stmt |+----------------------------------------------+| CREATE DATABASE `t3` || LOCATION || 'hdfs://myha01/user/hive/warehouse/t3.db' || WITH DBPROPERTIES ( || 'creator'='hadoop', || 'date'='2018-04-05') |+----------------------------------------------+6 rows selected (0.155 seconds)0: jdbc:hive2://hadoop3:10000>
3、删除库
说明
删除库操作
drop database dbname;drop database if exists dbname;
默认情况下,hive 不允许删除包含表的数据库,有两种解决办法:
1、 手动删除库下所有表,然后删除库
2、 使用 cascade 关键字
drop database if exists dbname cascade;
默认情况下就是 restrict drop database if exists myhive ==== drop database if exists myhive restrict
示例
(1)删除不含表的数据库
0: jdbc:hive2://hadoop3:10000> show tables in t1;+-----------+| tab_name |+-----------++-----------+No rows selected (0.147 seconds)0: jdbc:hive2://hadoop3:10000> drop database t1;No rows affected (0.178 seconds)0: jdbc:hive2://hadoop3:10000> show databases;+----------------+| database_name |+----------------+| default || myhive || t2 || t3 |+----------------+4 rows selected (0.124 seconds)0: jdbc:hive2://hadoop3:10000>
(2)删除含有表的数据库
0: jdbc:hive2://hadoop3:10000> drop database if exists t3 cascade;No rows affected (1.56 seconds)0: jdbc:hive2://hadoop3:10000>
4、切换库
语法
use database_name
示例
0: jdbc:hive2://hadoop3:10000> use t2;No rows affected (0.109 seconds)0: jdbc:hive2://hadoop3:10000>
表操作
1、创建表
语法
CREATE [EXTERNAL] TABLE [IF NOT EXISTS] table_name
[(col_name data_type [COMMENT col_comment], ...)]
[COMMENT table_comment]
[PARTITIONED BY (col_name data_type [COMMENT col_comment], ...)]
[CLUSTERED BY (col_name, col_name, ...)
[SORTED BY (col_name [ASC|DESC], ...)] INTO num_buckets BUCKETS]
[ROW FORMAT row_format]
[STORED AS file_format]
[LOCATION hdfs_path]
详情请参见:
•CREATE TABLE 创建一个指定名字的表。如果相同名字的表已经存在,则抛出异常;用户可以用 IF NOT EXIST 选项来忽略这个异常•EXTERNAL 关键字可以让用户创建一个外部表,在建表的同时指定一个指向实际数据的路径(LOCATION)•LIKE 允许用户复制现有的表结构,但是不复制数据•COMMENT可以为表与字段增加描述
•PARTITIONED BY 指定分区 •ROW FORMAT DELIMITED [FIELDS TERMINATED BY char] [COLLECTION ITEMS TERMINATED BY char] MAP KEYS TERMINATED BY char] [LINES TERMINATED BY char] | SERDE serde_name [WITH SERDEPROPERTIES (property_name=property_value, property_name=property_value, ...)] 用户在建表的时候可以自定义 SerDe 或者使用自带的 SerDe。如果没有指定 ROW FORMAT 或者 ROW FORMAT DELIMITED,将会使用自带的 SerDe。在建表的时候, 用户还需要为表指定列,用户在指定表的列的同时也会指定自定义的 SerDe,Hive 通过 SerDe 确定表的具体的列的数据。 •STORED AS SEQUENCEFILE //序列化文件 | TEXTFILE //普通的文本文件格式 | RCFILE //行列存储相结合的文件 | INPUTFORMAT input_format_classname OUTPUTFORMAT output_format_classname //自定义文件格式 如果文件数据是纯文本,可以使用 STORED AS TEXTFILE。如果数据需要压缩,使用 STORED AS SEQUENCE 。
•LOCATION指定表在HDFS的存储路径
最佳实践:
如果一份数据已经存储在HDFS上,并且要被多个用户或者客户端使用,最好创建外部表 反之,最好创建内部表。如果不指定,就按照默认的规则存储在默认的仓库路径中。
示例
使用t2数据库进行操作
(1)创建默认的内部表
0: jdbc:hive2://hadoop3:10000> create table student(id int, name string, sex string, age int,department string) row format delimited fields terminated by ",";No rows affected (0.222 seconds)0: jdbc:hive2://hadoop3:10000> desc student;+-------------+------------+----------+| col_name | data_type | comment |+-------------+------------+----------+| id | int | || name | string | || sex | string | || age | int | || department | string | |+-------------+------------+----------+5 rows selected (0.168 seconds)0: jdbc:hive2://hadoop3:10000>
(2)外部表
0: jdbc:hive2://hadoop3:10000> create external table student_ext (id int, name string, sex string, age int,department string) row format delimited fields terminated by "," location "/hive/student";No rows affected (0.248 seconds)0: jdbc:hive2://hadoop3:10000>
(3)分区表
0: jdbc:hive2://hadoop3:10000> create external table student_ptn(id int, name string, sex string, age int,department string). . . . . . . . . . . . . . .> partitioned by (city string). . . . . . . . . . . . . . .> row format delimited fields terminated by ",". . . . . . . . . . . . . . .> location "/hive/student_ptn";No rows affected (0.24 seconds)0: jdbc:hive2://hadoop3:10000>
添加分区
0: jdbc:hive2://hadoop3:10000> alter table student_ptn add partition(city="beijing");No rows affected (0.269 seconds)0: jdbc:hive2://hadoop3:10000> alter table student_ptn add partition(city="shenzhen");No rows affected (0.236 seconds)0: jdbc:hive2://hadoop3:10000>
如果某张表是分区表。那么每个分区的定义,其实就表现为了这张表的数据存储目录下的一个子目录
如果是分区表。那么数据文件一定要存储在某个分区中,而不能直接存储在表中。(4)分桶表
0: jdbc:hive2://hadoop3:10000> create external table student_bck(id int, name string, sex string, age int,department string). . . . . . . . . . . . . . .> clustered by (id) sorted by (id asc, name desc) into 4 buckets. . . . . . . . . . . . . . .> row format delimited fields terminated by ",". . . . . . . . . . . . . . .> location "/hive/student_bck";No rows affected (0.216 seconds)0: jdbc:hive2://hadoop3:10000>
(5)使用CTAS创建表
作用: 就是从一个查询SQL的结果来创建一个表进行存储
现象student表中导入数据
0: jdbc:hive2://hadoop3:10000> load data local inpath "/home/hadoop/student.txt" into table student;No rows affected (0.715 seconds)0: jdbc:hive2://hadoop3:10000> select * from student;+-------------+---------------+--------------+--------------+---------------------+| student.id | student.name | student.sex | student.age | student.department |+-------------+---------------+--------------+--------------+---------------------+| 95002 | 刘晨 | 女 | 19 | IS || 95017 | 王风娟 | 女 | 18 | IS || 95018 | 王一 | 女 | 19 | IS || 95013 | 冯伟 | 男 | 21 | CS || 95014 | 王小丽 | 女 | 19 | CS || 95019 | 邢小丽 | 女 | 19 | IS || 95020 | 赵钱 | 男 | 21 | IS || 95003 | 王敏 | 女 | 22 | MA || 95004 | 张立 | 男 | 19 | IS || 95012 | 孙花 | 女 | 20 | CS || 95010 | 孔小涛 | 男 | 19 | CS || 95005 | 刘刚 | 男 | 18 | MA || 95006 | 孙庆 | 男 | 23 | CS || 95007 | 易思玲 | 女 | 19 | MA || 95008 | 李娜 | 女 | 18 | CS || 95021 | 周二 | 男 | 17 | MA || 95022 | 郑明 | 男 | 20 | MA || 95001 | 李勇 | 男 | 20 | CS || 95011 | 包小柏 | 男 | 18 | MA || 95009 | 梦圆圆 | 女 | 18 | MA || 95015 | 王君 | 男 | 18 | MA |+-------------+---------------+--------------+--------------+---------------------+21 rows selected (0.342 seconds)0: jdbc:hive2://hadoop3:10000>
使用CTAS创建表
0: jdbc:hive2://hadoop3:10000> create table student_ctas as select * from student where id < 95012;WARNING: Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases.No rows affected (34.514 seconds)0: jdbc:hive2://hadoop3:10000> select * from student_ctas. . . . . . . . . . . . . . .> ;+------------------+--------------------+-------------------+-------------------+--------------------------+| student_ctas.id | student_ctas.name | student_ctas.sex | student_ctas.age | student_ctas.department |+------------------+--------------------+-------------------+-------------------+--------------------------+| 95002 | 刘晨 | 女 | 19 | IS || 95003 | 王敏 | 女 | 22 | MA || 95004 | 张立 | 男 | 19 | IS || 95010 | 孔小涛 | 男 | 19 | CS || 95005 | 刘刚 | 男 | 18 | MA || 95006 | 孙庆 | 男 | 23 | CS || 95007 | 易思玲 | 女 | 19 | MA || 95008 | 李娜 | 女 | 18 | CS || 95001 | 李勇 | 男 | 20 | CS || 95011 | 包小柏 | 男 | 18 | MA || 95009 | 梦圆圆 | 女 | 18 | MA |+------------------+--------------------+-------------------+-------------------+--------------------------+11 rows selected (0.445 seconds)0: jdbc:hive2://hadoop3:10000>
(6)复制表结构
0: jdbc:hive2://hadoop3:10000> create table student_copy like student;No rows affected (0.217 seconds)0: jdbc:hive2://hadoop3:10000>
注意:
如果在table的前面没有加external关键字,那么复制出来的新表。无论如何都是内部表
如果在table的前面有加external关键字,那么复制出来的新表。无论如何都是外部表2、查看表
(1)查看表列表
查看当前使用的数据库中有哪些表
0: jdbc:hive2://hadoop3:10000> show tables;+---------------+| tab_name |+---------------+| student || student_bck || student_copy || student_ctas || student_ext || student_ptn |+---------------+6 rows selected (0.163 seconds)0: jdbc:hive2://hadoop3:10000>
查看非当前使用的数据库中有哪些表
0: jdbc:hive2://hadoop3:10000> show tables in myhive;+-----------+| tab_name |+-----------+| student |+-----------+1 row selected (0.144 seconds)0: jdbc:hive2://hadoop3:10000>
查看数据库中以xxx开头的表
0: jdbc:hive2://hadoop3:10000> show tables like 'student_c*';+---------------+| tab_name |+---------------+| student_copy || student_ctas |+---------------+2 rows selected (0.13 seconds)0: jdbc:hive2://hadoop3:10000>
(2)查看表的详细信息
查看表的信息
0: jdbc:hive2://hadoop3:10000> desc student;+-------------+------------+----------+| col_name | data_type | comment |+-------------+------------+----------+| id | int | || name | string | || sex | string | || age | int | || department | string | |+-------------+------------+----------+5 rows selected (0.149 seconds)0: jdbc:hive2://hadoop3:10000>
查看表的详细信息(格式不友好)
0: jdbc:hive2://hadoop3:10000> desc extended student;
查看表的详细信息(格式友好)
0: jdbc:hive2://hadoop3:10000> desc formatted student;
查看分区信息
0: jdbc:hive2://hadoop3:10000> show partitions student_ptn;
(3)查看表的详细建表语句
0: jdbc:hive2://hadoop3:10000> show create table student_ptn;
3、修改表
(1)修改表名
0: jdbc:hive2://hadoop3:10000> alter table student rename to new_student;
(2)修改字段定义
A. 增加一个字段
0: jdbc:hive2://hadoop3:10000> alter table new_student add columns (score int);
B. 修改一个字段的定义
0: jdbc:hive2://hadoop3:10000> alter table new_student change name new_name string;
C. 删除一个字段
不支持
D. 替换所有字段
0: jdbc:hive2://hadoop3:10000> alter table new_student replace columns (id int, name string, address string);
(3)修改分区信息
A. 添加分区
静态分区
添加一个
0: jdbc:hive2://hadoop3:10000> alter table student_ptn add partition(city="chongqing");
添加多个
0: jdbc:hive2://hadoop3:10000> alter table student_ptn add partition(city="chongqing2") partition(city="chongqing3") partition(city="chongqing4");
动态分区
先向student_ptn表中插入数据,数据格式如下图
0: jdbc:hive2://hadoop3:10000> load data local inpath "/home/hadoop/student.txt" into table student_ptn partition(city="beijing");
现在我把这张表的内容直接插入到另一张表student_ptn_age中,并实现sex为动态分区(不指定到底是哪中性别,让系统自己分配决定)
首先创建student_ptn_age并指定分区为age
0: jdbc:hive2://hadoop3:10000> create table student_ptn_age(id int,name string,sex string,department string) partitioned by (age int);
从student_ptn表中查询数据并插入student_ptn_age表中
0: jdbc:hive2://hadoop3:10000> insert overwrite table student_ptn_age partition(age). . . . . . . . . . . . . . .> select id,name,sex,department,age from student_ptn;WARNING: Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases.No rows affected (27.905 seconds)0: jdbc:hive2://hadoop3:10000>
B. 修改分区
修改分区,一般来说,都是指修改分区的数据存储目录
在添加分区的时候,直接指定当前分区的数据存储目录
0: jdbc:hive2://hadoop3:10000> alter table student_ptn add if not exists partition(city='beijing') . . . . . . . . . . . . . . .> location '/student_ptn_beijing' partition(city='cc') location '/student_cc';No rows affected (0.306 seconds)0: jdbc:hive2://hadoop3:10000>
修改已经指定好的分区的数据存储目录
0: jdbc:hive2://hadoop3:10000> alter table student_ptn partition (city='beijing') set location '/student_ptn_beijing';
此时原先的分区文件夹仍存在,但是在往分区添加数据时,只会添加到新的分区目录
C. 删除分区
0: jdbc:hive2://hadoop3:10000> alter table student_ptn drop partition (city='beijing');
4、删除表
0: jdbc:hive2://hadoop3:10000> drop table new_student;
5、清空表
0: jdbc:hive2://hadoop3:10000> truncate table student_ptn;
其他辅助命令